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1. Injection

An injection of code happens when an attacker sends invalid data to the web application 

with the intention to make it do something different from what the application was 

designed/programmed to do.

Perhaps the most common example around this security vulnerability is the SQL query 

consuming untrusted data. You can see one of OWASP’s examples below:

String query = “SELECT * FROM accounts WHEREcustID = ‘” + request.getParameter(“id”) 

+ “’”;

This query can be exploited by calling up the web page executing it with the following URL: 

http://example.com/app/accountView?id=’ or ’1’=’1, causing the return of all the rows 

stored on the database table.

The core of a code injection vulnerability is the lack of validation and sanitization of the 

data consumed by the web application, which means that this vulnerability can be present 

on almost any type of technology.

Anything that accepts parameters as 

input can potentially be vulnerable 

to a code injection attack.

Here is another example of an SQL injection that affected over half a million websites. 

This code is part of the function get_products(). If attackers set arbitrary values for the 

variable $limit they can modify the query in a way that can lead to a full compromise on 

some servers.

If ( ! empty( $is_default ) ) {

 if( ! empty( $user_id) ) {

$this->generate_defualt_wishlist( $user_iD );

 }

 $sql. = “ AND l. `is_default̀  = %d”;

 }

  if (! empty( $id ) ) {

  $sql. = “ AND `i.ID̀  = %d”;

  $sql_args [] = $id;

  }

  $sql .= “GROUP BY i.prod_id, L.ID”;

  if (!empty ( $limit ) && isset ( $offset ) ) {

  $sql .= “ LIMIT “. $offset . “ , “. $limit; 

 } 

 $wishlist = $wpdb-> get_results ($wpdb<prepare ( $sql, $sql_args ), ARRAY_A );

}
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2. Broken Authentication

A broken authentication vulnerability can allow an attacker  

to  use  manual  or  automatic  mediums  to  try  to  gain   

control  over  a user account  –  or   even worse – to gain 

complete control over the system.

Websites with broken authentication vulnerabilities 

are very common on the web. Broken Authentication 

usually refers to logic issues that occur on the application 

authentication’s mechanism, like bad session management 

prone to username enumeration.

To avoid broken authentication, don’t leave the login page 

for admins publicly accessible to all visitors of the website:

/administrator on Joomla!, 

/wp-admin/ on WordPress, 

/index.php/admin on Magento, 

/user/login on Drupal.

The second most common form of this flaw is allowing 

users to brute force username/password combinations 

against those pages.

 
 

How do you prevent broken authentication 
vulnerabilities?

In order to avoid broken authentication vulnerabilities, 

make sure the developers apply best practices to website 

security. Provide access to external security audits and 

enough time to properly test the code before deploying 

to production.

OWASP’s technical recommendations are the following:

• Align password length, complexity, and rotation 

policies with NIST 800-63 B’s guidelines in section 

5.1.1 for Memorized Secrets or other modern, 

evidence-based password policies.

• Ensure registration, credential recovery, and 

API pathways are hardened against account-

enumeration attacks by using the same messages 

for all outcomes.

• Limit failed login attempts. Log all failures and alert 

administrators when credential stuffing, brute 

force, or other attacks are detected.

• Use a server-side, secure, built-in session manager 

that generates a new, random session ID with high 

entropy after login. Session IDs should not be in 

the URL. ID’s should also be securely stored and 

invalidated after logout, idle, and absolute timeouts. 

 

 

 

Types of Vulnerabilities

However, broken authentication vulnerabilities can come 

in many forms. According to OWASP, a web application 

contains a broken authentication vulnerability if it:

• Permits automated attacks such as credential 

stuffing, where the attacker has a list of valid 

usernames and passwords.

• Permits brute force or other automated attacks.

• Permits default, weak, or well-known passwords, 

such as”Password1″ or “admin/admin“.

• Uses weak or ineffective credential recovery and 

forgot-password processes, such as “knowledge-

based answers”, which cannot be made safe.

• Uses plain text, encrypted, or weakly hashed 

passwords.

• Has missing or ineffective multi-factor authentication.

• Exposes Session IDs in the URL (e.g., URL rewriting).

• Does not rotate Session IDs after successful login.

• Does not properly invalidate Session IDs. User 

sessions or authentication tokens (particularly 

single sign-on (SSO) tokens) aren’t properly 

invalidated during logout or a period of inactivity.

Writing insecure software results in most of the 

types of broken authentication vulnerabilities. They can 

be attributed to many factors, like lack of experience 

from the developers or institutionalized failures such 

as organizations rushing software releases—in other 

words, choosing working software over secure software. 
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3. Sensitive Data Exposure

Examples of Sensitive Data

Some sensitive data that requires protection is:

• Passwords

• Credit card numbers

• Credentials

• Social Security Numbers

• Health information

• Personally Identifiable Information

• Other personal information

It is vital for any organization to understand the importance 

of protecting users’ information and privacy. All companies 

should comply with their local privacy laws.

Responsible sensitive data collection and handling have 

become more noticeable, especially after the advent of 

the General Data Protection Regulation (GDPR). GDPR  is   

a new landmark data privacy law that came into effect May 

2018. Ecommerce websites can reference the PCI  DSS 

requirements to secure cardholder data.

Sensitive data exposure is one of the most widespread vulnerabilities. It consists of stolen PII 

(personally identifiable information)  data that should have been protected. These are commonly 

known as data breaches.

Protecting Data in Transit

Both types of data should be protected. When thinking 

about data in transit, one way to protect it on a website is 

by having an SSL certificate.

SSL is the common (but deprecated) name for the TLS 

protocol, used  to establish an  encrypted link between a 

web server and a browser.

We have created a DIY guide to help every website owner 

install an SSL certificate to their website. You can check 

out How to Install an SSL Certificate.

 

 

 

 

What Are the Risks?

According to OWASP, here are a few examples of what can 

happen when sensitive data is exposed:

Scenario #1: An application encrypts credit card 

numbers in a database using automatic database 

encryption. However, this data is automatically 

decrypted when retrieved, allowing an SQL injection 

flaw to retrieve credit card numbers in clear text.

 

Scenario #2: A site doesn’t use or enforce TLS for 

all pages or supports weak encryption. An attacker 

monitors network traffic (e.g. at an insecure wireless 

network), downgrades connections from HTTPS 

to HTTP, intercepts requests, and steals the user’s 

session cookie. The attacker then replays this cookie 

and hijacks the user’s (authenticated) session, 

accessing or modifying the user’s private data. 

Instead of the above they could alter all transported 

data, e.g. the recipient of a money transfer.

 

Scenario #3: The password database uses unsalted 

or simple hashes to store everyone’s passwords. A 

file upload flaw allows an attacker to retrieve the 

password database. All the unsalted hashes can 

be exposed with a rainbow table of pre-calculated 

hashes. Hashes generated by simple or fast hash 

functions may be cracked by GPUs, even if they were 

salted.
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Why is Sensitive Data Exposure so Common?

Over the last few years, sensitive data exposure has been one of the most common attacks around the world. 

Some examples of data leaks that resulted in sensitive data exposure are:

• The Brazilian C&A, a fashion retail clothing chain suffered a gift card platform cyberattack in August 

2018.

• The Uber breach in 2016 that exposed the personal information of 57 million Uber users, as well as 

600,000 drivers.

• The Target store data breach that occurred around Thanksgiving exposing credit/debit card and 

contact information of up to 110 million people.

Failure to encrypt sensitive data is the main reason why these attacks are still so widespread. Even encrypted 

data can be broken due to the following weaknesses:

• Key generation process;

• Key management process;

• Algorithm usage;

• Protocol usage;

• Cipher usage;

This vulnerability is usually very hard to explore; however, the consequences of a successful attack is dreadful. 

If you want to learn more, we have written a blog post on the Impacts of the Security Breach.
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How to Prevent Data Exposure

Here are some of the ways to prevent data exposure, according to OWASP:

• Classify data processed, stored, or transmitted by an application.

• Identify which data is sensitive according to privacy laws, regulatory requirements, or business needs.

• Apply controls, as per the classification.

• Don’t store sensitive data unnecessarily.

• Discard it as soon as possible or use PCI DSS compliant tokenization or even truncation. Data that is not retained 

cannot be stolen.

• Make sure to encrypt all sensitive data at rest.

• Ensure up-to-date and strong, standard algorithms, protocols, and keys are in place; use proper key management.

• Encrypt all data in transit with secure protocols such as TLS with perfect forward secrecy (PFS) ciphers, cipher 

prioritization by the server, and secure parameters.

• Enforce encryption using directives like HTTP Strict Transport Security (HSTS).

• Disable caching for responses that contain sensitive data.

• Store passwords using strong adaptive and salted hashing functions with a work factor (delay factor), such as Argon2, 

scrypt, bcrypt, or PBKDF2.

• Verify independently the effectiveness of configuration and settings.
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4. XML External Entities (XXE)

What Are the Attack Vectors?

According to OWASP, the XML external entities (XXE) main 

attack vectors are:

• Exploitation of vulnerable XML processors if 

malicious actors can upload XML or include hostile 

content in an XML document;

• Exploitation of vulnerable code;

• Exploitation of vulnerable dependencies;

• Exploitation of vulnerable integrations. 

How to Prevent XML External Entity Attacks

Some of the ways to prevent XML External Entity attacks, 

according to OWASP are:

• Whenever possible, use less complex data formats 

such as JSON, and avoid serialization of sensitive 

data.

• Patch or upgrade all XML processors and libraries in 

use by the application or on the underlying operating 

system.

•  Use dependency checkers (update SOAP to SOAP 

1.2 or higher).

• Disable XML external entity and DTD processing in 

all XML parsers in the application, as per the OWASP 

Cheat Sheet ‘XXE Prevention’.

• Implement positive (“whitelisting”) server-side input 

validation, filtering, or sanitization to prevent hostile 

data within XML documents, headers, or nodes.

• Verify that XML or XSL file upload functionality 

validates incoming XML using XSD validation or 

similar.

• SAST tools can help detect XXE in source code – 

although manual code review is the best alternative 

in large, complex applications with many integrations.

If these controls are not possible, consider using virtual 

patching, API security gateways, and a Web Application 

Firewalls (WAFs) to detect, monitor, and block XXE attacks. 

 

Example of an XML External Entity Attack

According to OWASP, the easiest way to exploit an XXE is is 

to upload a malicious XML file.

Scenario #1: The attacker attempts to extract data from 

the server:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM “file:///etc/passwd” >]>

<foo>&xxe;</foo>

Scenario #2: An attacker probes the server’s private 

network by changing the above ENTITY line to:

<!ENTITY xxe SYSTEM “https://192.168.1.1/private” >]>

Scenario #3: An attacker attempts a denial-of-service 

attack by including a potentially endless file:

<!ENTITY xxe SYSTEM “file:///dev/random” >]>

According to Wikipedia

An XML External Entity attack is a type of attack against an application that parses XML input. This attack occurs when 

XML input containing a reference to an external entity is processed by a weakly configured XML parser.

Most XML parsers are vulnerable to XXE attacks by default, and an XXE can occur in deeply nested dependencies. That is why the 

responsibility of ensuring the application does not have this vulnerability lies mostly on the developer
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5. Broken Access Control

In website security, access control means to put a limit on what sections or 

pages visitors can reach, depending on their needs.

For example, if you own an ecommerce store, you probably need access to the 

admin panel in order to add new products or to set up a promotion for the 

upcoming holidays. However, hardly anybody else would need it. Having the 

rest of your website’s visitors be able to reach your login page only opens up 

your ecommerce store to attacks.

And that’s the problem with almost all major content management systems 

(CMSs) these days. By default, they give worldwide access to the admin panel. 

Most of them also won’t force you to establish a second-factor authentication 

method (2FA).

The above makes you look at software development with a security-first 

philosophy. Access control issues are also present in other areas.

Examples of Access

• Access to a hosting control / administrative panel

• Access to a server via FTP / SFTP / SSH

• Access to a website’s administrative panel

• Access to other applications on your server

• Access to a database

These are ways attackers can exploit authorization flaws:

• Access unauthorized functionality and/or data;

• View sensitive files;

• Modify other users’ data;

• Change access rights, etc.
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Broken Access Control

What Are the Risks?

According to OWASP, here are a few examples of what can happen when there is 

broken access control:

Scenario #1: The application uses unverified data in a SQL call that is 

accessing account information:

pstmt.setString(1,request.getParameter(“acct”)); ResultSetresults 

=pstmt.executeQuery( );

 

An attacker simply modifies the ‘acct’ parameter in the browser to send 

whatever account number they want. If not properly verified, the attacker can 

access any user’s account.

             http://example.com/app/accountInfo?acct=notmyacct

Scenario #2: An attacker simply force browses to target URLs. Admin rights 

are required for access to the admin page.

http://example.com/app/getappInfo

http://example.com/app/admin_getappInfo

Developers are going to be more familiar with the above scenarios, but 

remember that broken access control vulnerabilities can be expressed in many 

forms through almost every web technology out there; it all depends on what 

you use on your website.

Reducing the Risks of Broken Access Control

There are things you can do to reduce the risk of broken access control:

1.  Employ least privileged concepts – apply a role appropriate to the task 

and no more.

2.  Remove accounts you don’t need.

3.  Audit your servers and websites – who is doing what, when, and why.

4.  If possible, apply multi-factor authentication to all your access points.

5. Disable access points until needed in order to reduce your access windows.

6.  Remove unnecessary services off your server.

7. Verify applications that are externally accessible versus applications that 

are tied to your network.

8.  If you are developing a website, bear in mind that a production box should 

not be the place to develop, test, or push updates without testing.

How to Prevent Broken Access Control

With the exception of public resources, deny by default.

Implement access control mechanisms once and reuse them throughout the 

application, including minimizing CORS usage.

The technical recommendations by OWASP to prevent broken access 

control are:

• Model access controls should enforce record ownership, rather than 

accepting that the user can create, read, update, or delete any record. 

Note: For example,  if a user log-ins as “John”, he could only create, read, 

update or delete records associated with the id of “John”. Never the data 

from other users.

• Unique application business limit requirements should be enforced by 

domain models.

• Disable web server directory listing and ensure file metadata (e.g. .git) and 

backup files are not present within web roots.

• Log access control failures, alert admins when appropriate (e.g. repeated 

failures). Note: We recommend our free plugin for WordPress websites, 

that you can download directly from the official WordPress repository. 

• Rate limit API and controller access to minimize the harm from automated 

attack tooling.

•  JWT tokens should be invalidated on the server after logout.

• Developers and QA staff should include functional access control unit and 

integration tests.
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6. Security Misconfigurations

Hackers are always looking for ways to penetrate websites, and 

security misconfigurations can be an easy way in. Here are some 

examples of things that hackers usually try to exploit in order to 

gain unauthorized access:

• Unpatched flaws

• Default configurations

• Unused pages

• Unprotected files and directories

• Unnecessary services

One of the most common webmaster flaws is to keep the CMS 

default configurations.

Today’s CMS applications (although easy to use) can be tricky 

from a security perspective for the end users. By far the most 

common attacks are entirely automated. Many of these attacks 

rely on users having only default settings.

This means that a large number of attacks can be avoided by 

changing the default settings when installing a CMS.

For example, some CMS applications are writeable by the user – 

allowing a user to install whatever extensions they want.

There are settings you may want to adjust to control comments, 

users, and the visibility of user information. The file permissions 

are another example of a default setting that can be hardened.

Where Can Security Misconfiguration Happen?

Security misconfiguration can happen at any level of an 

application stack, including:

• Network services,

• Platform,

• Web server,

• Application server,

• Database,

• Frameworks,

• Custom code,

• Pre-installed virtual machines,

• Containers,

• Storage.

One example of application misconfigurations is the memcached 

servers which, left on default settings, have an open UDP port 

that attackers used to DDoS huge services in the tech industry.  .  
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Security Misconfigurations

Scenario #1: The application server comes with sample applications that 

are not removed from the production server.

These sample applications have known security flaws attackers use to 

compromise the server. If one of these applications is the admin console 

and default accounts weren’t changed, the attacker logs in with default 

passwords and takes over.

Scenario #2: Directory listing is not disabled on the server. An attacker 

discovers they can simply list directories. They find and download the 

compiled Java classes, which they decompile and reverse engineer to 

view the code. The attacker then finds a serious access control flaw in the 

application.

Scenario #3: The application server’s configuration allows detailed 

error messages, e.g. stack traces, to be returned to users. This potentially 

exposes sensitive information or underlying flaws, such as component 

versions. They are known to be vulnerable.

Scenario #4: A cloud service provider has default sharing permissions 

open to the Internet by other CSP users. This allows stored sensitive data 

to be accessed within cloud storage.

How to Have Secure Installation Systems

According to OWASP, here are some examples of security misconfigurations.

• A repeatable hardening process that makes it fast and easy to deploy 

another environment that is properly locked down. 

•  Development, QA, and production environments should all be configured 

identically, with different credentials used in each environment. Automate 

this process in order to minimize the effort required to set up a new 

secure environment.

• A minimal platform without any unnecessary features, components, 

documentation, and samples. Remove or do not install unused features 

and frameworks.

• A task to review and update the configurations appropriate to all security 

notes, updates, and patches as part of the patch management process. In 

particular, review cloud storage permissions.

• A segmented application architecture that provides effective and 

secure separation between components or tenants, with segmentation, 

containerization, or cloud security groups.

• Sending security directives to clients, e.g. Security Headers.

• An automated process to verify the effectiveness of the configurations 

and settings in all environments.
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7. Cross-Site Scripting (XSS)

Cross Site Scripting (XSS) is a widespread vulnerability that affects many web 

applications. XSS attacks consist of injecting malicious client-side scripts into a 

website and using the website as a propagation method.

The danger behind XSS is that it allows an attacker to inject content into a 

website and modify how it is displayed, forcing a victim’s browser to execute 

the code provided by the attacker while loading the page.

XSS is present in about two-thirds of all applications.

Generally, XSS vulnerabilities require some type of interaction by the user to be 

triggered, either via social engineering or via a visit to a specific page. If an XSS 

vulnerability is not patched, it can be very dangerous to any website.

Examples of  XSS Vulnerabilities

Imagine you are on your WordPress wp-admin panel adding a new post. If you 

are using a plugin with a stored XSS vulnerability that is exploited by a hacker, it 

can force the browser to create a new admin user while in the wp-admin panel 

or it can edit a post and perform other similar actions.

An XSS vulnerability gives the attacker almost full control of the most important 

software of computers nowadays: the browsers.

Last year, our research team disclosed a stored XSS vulnerability in the 

core of WordPress websites. Remote attackers could use this vulnerability 

to deface a random post on a WordPress site and store malicious JavaScript 

code in it.
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 Cross-Site Scripting (XSS)

Scenario #1: The application server comes with sample applications that are 

not removed from the production server. These sample applications have known 

security flaws attackers use to compromise the server. If one of these applications is 

the admin console and default accounts weren’t changed, the attacker logs in with 

default passwords and takes over.

Scenario #2: Directory listing is not disabled on the server. An attacker discovers 

they can simply list directories. They find and download the compiled Java classes, 

which they decompile and reverse engineer to view the code. The attacker then finds 

a serious access control flaw in the application.

Scenario #3: The application server’s configuration allows detailed error messages, 

e.g. stack traces, to be returned to users. This potentially exposes sensitive information 

or underlying flaws, such as component versions. They are known to be vulnerable.

Scenario #4: A cloud service provider has default sharing permissions open to the 

Internet by other CSP users. This allows stored sensitive data to be accessed within 

cloud storage.

Reflected XSS 

OWASP defines the following attack scenarios involving XSS vulnerabilities.

1. The application or API includes unvalidated and unescaped user input as 

part of HTML output. A successful attack can allow the attacker to execute 

arbitrary HTML and JavaScript in the victim’s browser.

2. Typically the user will need to interact with some malicious link that points 

to an attacker-controlled page, such as malicious watering hole websites, 

advertisements, or similar.

Stored XSS

1. The application or API stores unsanitized user input that is 

viewed at a later time by another user or an administrator. 

Stored XSS is often considered high or critical risk.

DOM XSS 

1. JavaScript frameworks, single-page applications, and APIs that 

dynamically include attacker-controllable data to a page are 

vulnerable to DOM XSS. Ideally, the application would not send 

attacker-controllable data to unsafe JavaScript APIs.

2. Typical XSS attacks include session stealing, account takeover, 

MFA bypass, DOM-node replacement or defacement (such as 

Trojan login panels), attacks against the user’s browser such 

as malicious software downloads, keylogging, and other client-

side attacks.

Types of XSS

According to OWASP, there are three types of XSS:

XSS Type

Stored

Reflected

DOM-Based

Server

Stored Server

Reflected Server

Client

Stored Client

Reflected Client

Subset of Client
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8. Insecure Deserialization

In computer science, an object is a data structure; in other 

words, a way to structure data. s Two key concepts make it 

easier to understand:

• The process of serialization is converting objects to byte 

strings.

• The process of deserialization is converting byte strings 

to objects.

 
Example of Attack Scenarios

According to OWASP, here are some examples of attack 

scenarios:

Scenario #1: A React application calls a set of Spring Boot 

microservices. Being functional programmers, they tried to 

ensure that their code is immutable. The solution they came 

up with is serializing user state and passing it back and forth 

with each request. An attacker notices the “R00” Java object 

signature, and uses the Java Serial Killer tool to gain remote 

code execution on the application server.

Scenario #2: A PHP forum uses PHP object serialization 

to save a “super” cookie, containing the user’s user ID, role, 

password hash, and other state: 

a:4:{i:0;i:132;i:1;s:7:”Mallory”;i:2;s:4:”user”;

i:3;s:32:”b6a8b3bea87fe0e05022f8f3c88bc960”;}

An attacker changes the serialized object to give themselves 

admin privileges:

a:4:{i:0;i:1;i:1;s:5:”Alice”;i:2;s:5:”admin”;

i:3;s:32:”b6a8b3bea87fe0e05022f8f3c88bc960”;}

One of the attack vectors presented by OWASP regarding 

this security risk was a super cookie containing serialized 

information about the logged in user. The role of the user was 

specified in this cookie.

If an attacker is able to deserialize an object successfully, then 

modify the object to give himself an admin role, they can serialize 

it again. This set of actions could compromise the whole web 

application. 

How to Prevent Insecure Deserializations

The best way to protect your web application from this type of risk is not to 

accept serialized objects from untrusted sources.

If you can’t do this, OWASP provides more technical recommendations that 

you (or your developers) can try to implement:

• Implementing integrity checks such as digital signatures on any 

serialized objects to prevent hostile object creation or data tampering.

• Enforcing strict type constraints during deserialization before object 

creation as the code typically expects a definable set of classes. 

• Bypasses to this technique have been demonstrated, so reliance 

solely on this is not advisable.

• Isolating and running code that deserializes in low privilege 

environments when possible.

• Logging deserialization exceptions and failures, such as where the 

incoming type is not the expected type, or the deserialization throws 

exceptions.

• Restricting or monitoring incoming and outgoing network connectivity 

from containers or servers that deserialize.

• Monitoring deserialization, alerting if a user deserializes constantly.
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9. Using Components with Known Vulnerabilities

These days, even simple websites such as personal blogs have a 

lot of dependencies.

We can all agree that failing to update every piece of software 

on the backend and frontend of a website will, without a doubt, 

introduce heavy security risks sooner rather than later.

For example, our hacked website report for 2018 has a 

dedicated section around outdated CMSs. This report shows 

that at the time of the infection:

• 36.7% of infected WordPress websites were out of date.

• 50% of infected Modx websites were out of date.

• 63.1% of infected Drupal websites were out of date.

• 72.6% of infected phpBB websites were out of date.

• 83.1% of infected Magento websites were out of date.

• 87.5% of infected Joomla! websites were out of date.

• 91.3% of infected OpenCart websites were out of date.

• 97.2% of infected PrestaShop websites were out of date.

The question is, why aren’t we updating our software on time? 

Why is this still such a huge problem today?

There are some possibilities, such as:

• Webmasters/developers cannot keep up with the pace of 

the updates; after all, updating properly takes time.

• Legacy code won’t work on newer versions of its 

dependencies.

This might be a little too dramatic, but every time you disregard 

an update warning, you might be allowing a now known 

vulnerability to survive in your system. Cybercriminals are quick 

to investigate software and update changelogs.

Whatever the reason for running out-of-date software on your 

web application is, you can’t leave it unprotected. Both Sucuri 

and OWASP recommend virtual patching for the cases where 

patching is not possible.

Virtual patching affords websites that are outdated (or with 

known vulnerabilities) to be protected from attacks by preventing 

the exploitation of these vulnerabilities on the fly. This is usually 

done by a firewall and an intrusion detection system.

Vulnerable Applications

Vulnerable applications are usually outdated, according to 

OWASP if:

• You do not know the versions of all components you use 

(both client-side and server-side). This includes components 

you directly use as well as nested dependencies.

• The software is vulnerable, unsupported, or out of date. 

This includes the OS, web/application server, database 

management system (DBMS), applications, APIs and all 

components, runtime environments, and libraries.

• You do not fix or upgrade the underlying platform, 

frameworks, and dependencies in a risk-based, timely 

fashion. This commonly happens in environments when 

patching is a monthly or quarterly task under change 

control, which leaves organizations open to many days or 

months of unnecessary exposure to fixed vulnerabilities.

• The software developers do not test the compatibility of 

updated, upgraded, or patched libraries.

• You do not secure the components’ configurations.

You can subscribe to our blog feed to stay on top of website 

security issues.

How to Prevent Using Components with Known 
Vulnerabilities.

Some of the ways to prevent the use of vulnerable components are:

• Remove all unnecessary dependencies.

• Have an inventory of all your components on the client-side and 

server-side.

• Monitor sources like Common Vulnerabilities and Disclosures 

(CVE) and National Vulnerability Database (NVD) for vulnerabilities 

in the components.

• Obtain components only from official sources.

• Get rid of components not actively maintained.

• Use virtual patching.
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10. Insufficient Logging and Monitoring

The importance of securing a website cannot be 

understated. While 100% security is not a realistic goal, 

there are ways to keep your website monitored on 

a regular basis so you can take immediate action when 

something happens.

Not having an efficient logging and monitoring process in 

place can increase the chances of a website compromise.

Here at Sucuri, we highly recommend that every 

website is properly monitored. If you need to monitor 

your server,  OSSEC is  freely    available  to  help  you.   

OSSEC actively monitors all aspects of system 

activity with file integrity monitoring, log 

monitoring, root check, and process monitoring. 

How to Have Efficient Website Monitoring

Keeping audit logs are vital to staying on top of any 

suspicious change to your website. An audit log is a 

document that records the events in a website so you can 

spot anomalies and confirm with the person in charge that 

the account hasn’t been compromised.

We know that it may be hard for some users to perform 

audit logs manually. If you have a WordPress website, 

you can use our Free Security Plugin which can be 

downloaded from the official WordPress repository.

The Sucuri Website Security Platform has a comprehensive 

monitoring solution that includes:

1. Remote scanner

2. Website blacklist scanner

3. Server-side scanner

4. DNS scanner

5. SSL scanner

6. Uptime scanner

If you are looking for a security solution for your website, 

check out our comprehensive Website Security 

Platform.

Example of Attack Scenarios

According to OWASP, here are some examples of attack 

scenarios due to insufficient logging and monitoring:

Scenario #1: An open-source project forum 

software run by a small team was hacked using 

a flaw in its software. The attackers managed 

to wipe out the internal source code repository 

containing the next version and all of the forum 

contents. Although source could be recovered, 

the lack of monitoring, logging, or alerting led 

to a far worse breach. The forum software 

project is no longer active as a result of this issue. 

Scenario #2: An attacker scans for users with a 

common password. They can take over all accounts 

with this password. For all other users, this scan 

leaves only one false login behind. After some days, 

this may be repeated with a different password.

Scenario #3: A major U.S. retailer reportedly had 

an internal malware analysis sandbox analyzing 

attachments. The sandbox software had detected 

potentially unwanted software, but no one 

responded to this detection. The sandbox had been 

producing warnings for some time before detecting 

the breach due to fraudulent card transactions by 

an external bank.
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