
Top 10 Vulnerabilities
OWASP

2019
The de facto list of critical threats to

your website. Learn what they are

and how to protect your website.*

*Based on the latest OWASP Top Ten list from 2017

2

The Top 10 OWASP vulnerabilities are

1. Injection

2. Broken Authentication

3. Sensitive data exposure

4. XML External Entities (XXE)

5. Broken Access control

6. Security misconfigurations

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with Known Vulnerabilities

10. Insufficient Logging and Monitoring

3

4

5

8

9

11

13

15

16

17

© 2019 Sucuri. All Rights Reserved.

OWASP stands for the Open Web Application

Security Project, that produces articles,

methodologies, documentation, tools, and technologies

in the field of web application security.

OWASP Core Purpose: Be the thriving global

community that drives visibility and evolution in

the safety and security of the world’s software.

This ebook, “OWASP Top Ten Vulnerabilities 2019”, cites information and examples found in “Top 10-2017 Top Ten” by OWASP, used under CC BY-SA.

https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Main_Page
https://creativecommons.org/licenses/by-sa/4.0/

1. Injection

An injection of code happens when an attacker sends invalid data to the web application

with the intention to make it do something different from what the application was

designed/programmed to do.

Perhaps the most common example around this security vulnerability is the SQL query

consuming untrusted data. You can see one of OWASP’s examples below:

String query = “SELECT * FROM accounts WHEREcustID = ‘” + request.getParameter(“id”)

+ “’”;

This query can be exploited by calling up the web page executing it with the following URL:

http://example.com/app/accountView?id=’ or ’1’=’1, causing the return of all the rows

stored on the database table.

The core of a code injection vulnerability is the lack of validation and sanitization of the

data consumed by the web application, which means that this vulnerability can be present

on almost any type of technology.

Anything that accepts parameters as

input can potentially be vulnerable

to a code injection attack.

Here is another example of an SQL injection that affected over half a million websites.

This code is part of the function get_products(). If attackers set arbitrary values for the

variable $limit they can modify the query in a way that can lead to a full compromise on

some servers.

If (! empty($is_default)) {

 if(! empty($user_id)) {

$this->generate_defualt_wishlist($user_iD);

 }

 $sql. = “ AND l. `is_default̀ = %d”;

 }

 if (! empty($id)) {

 $sql. = “ AND `i.ID̀ = %d”;

 $sql_args [] = $id;

 }

 $sql .= “GROUP BY i.prod_id, L.ID”;

 if (!empty ($limit) && isset ($offset)) {

 $sql .= “ LIMIT “. $offset . “ , “. $limit;

 }

 $wishlist = $wpdb-> get_results ($wpdb<prepare ($sql, $sql_args), ARRAY_A);

}

3

2. Broken Authentication

A broken authentication vulnerability can allow an attacker

to use manual or automatic mediums to try to gain

control over a user account – or even worse – to gain

complete control over the system.

Websites with broken authentication vulnerabilities

are very common on the web. Broken Authentication

usually refers to logic issues that occur on the application

authentication’s mechanism, like bad session management

prone to username enumeration.

To avoid broken authentication, don’t leave the login page

for admins publicly accessible to all visitors of the website:

/administrator on Joomla!,

/wp-admin/ on WordPress,

/index.php/admin on Magento,

/user/login on Drupal.

The second most common form of this flaw is allowing

users to brute force username/password combinations

against those pages.

How do you prevent broken authentication
vulnerabilities?

In order to avoid broken authentication vulnerabilities,

make sure the developers apply best practices to website

security. Provide access to external security audits and

enough time to properly test the code before deploying

to production.

OWASP’s technical recommendations are the following:

• Align password length, complexity, and rotation

policies with NIST 800-63 B’s guidelines in section

5.1.1 for Memorized Secrets or other modern,

evidence-based password policies.

• Ensure registration, credential recovery, and

API pathways are hardened against account-

enumeration attacks by using the same messages

for all outcomes.

• Limit failed login attempts. Log all failures and alert

administrators when credential stuffing, brute

force, or other attacks are detected.

• Use a server-side, secure, built-in session manager

that generates a new, random session ID with high

entropy after login. Session IDs should not be in

the URL. ID’s should also be securely stored and

invalidated after logout, idle, and absolute timeouts.

Types of Vulnerabilities

However, broken authentication vulnerabilities can come

in many forms. According to OWASP, a web application

contains a broken authentication vulnerability if it:

• Permits automated attacks such as credential

stuffing, where the attacker has a list of valid

usernames and passwords.

• Permits brute force or other automated attacks.

• Permits default, weak, or well-known passwords,

such as”Password1″ or “admin/admin“.

• Uses weak or ineffective credential recovery and

forgot-password processes, such as “knowledge-

based answers”, which cannot be made safe.

• Uses plain text, encrypted, or weakly hashed

passwords.

• Has missing or ineffective multi-factor authentication.

• Exposes Session IDs in the URL (e.g., URL rewriting).

• Does not rotate Session IDs after successful login.

• Does not properly invalidate Session IDs. User

sessions or authentication tokens (particularly

single sign-on (SSO) tokens) aren’t properly

invalidated during logout or a period of inactivity.

Writing insecure software results in most of the

types of broken authentication vulnerabilities. They can

be attributed to many factors, like lack of experience

from the developers or institutionalized failures such

as organizations rushing software releases—in other

words, choosing working software over secure software.

4

3. Sensitive Data Exposure

Examples of Sensitive Data

Some sensitive data that requires protection is:

• Passwords

• Credit card numbers

• Credentials

• Social Security Numbers

• Health information

• Personally Identifiable Information

• Other personal information

It is vital for any organization to understand the importance

of protecting users’ information and privacy. All companies

should comply with their local privacy laws.

Responsible sensitive data collection and handling have

become more noticeable, especially after the advent of

the General Data Protection Regulation (GDPR). GDPR is

a new landmark data privacy law that came into effect May

2018. Ecommerce websites can reference the PCI DSS

requirements to secure cardholder data.

Sensitive data exposure is one of the most widespread vulnerabilities. It consists of stolen PII

(personally identifiable information) data that should have been protected. These are commonly

known as data breaches.

Protecting Data in Transit

Both types of data should be protected. When thinking

about data in transit, one way to protect it on a website is

by having an SSL certificate.

SSL is the common (but deprecated) name for the TLS

protocol, used to establish an encrypted link between a

web server and a browser.

We have created a DIY guide to help every website owner

install an SSL certificate to their website. You can check

out How to Install an SSL Certificate.

What Are the Risks?

According to OWASP, here are a few examples of what can

happen when sensitive data is exposed:

Scenario #1: An application encrypts credit card

numbers in a database using automatic database

encryption. However, this data is automatically

decrypted when retrieved, allowing an SQL injection

flaw to retrieve credit card numbers in clear text.

Scenario #2: A site doesn’t use or enforce TLS for

all pages or supports weak encryption. An attacker

monitors network traffic (e.g. at an insecure wireless

network), downgrades connections from HTTPS

to HTTP, intercepts requests, and steals the user’s

session cookie. The attacker then replays this cookie

and hijacks the user’s (authenticated) session,

accessing or modifying the user’s private data.

Instead of the above they could alter all transported

data, e.g. the recipient of a money transfer.

Scenario #3: The password database uses unsalted

or simple hashes to store everyone’s passwords. A

file upload flaw allows an attacker to retrieve the

password database. All the unsalted hashes can

be exposed with a rainbow table of pre-calculated

hashes. Hashes generated by simple or fast hash

functions may be cracked by GPUs, even if they were

salted.

5

https://blog.sucuri.net/2018/09/ssl-vs-website-security.html
https://sucuri.net/guides/how-to-install-ssl-certificate

Why is Sensitive Data Exposure so Common?

Over the last few years, sensitive data exposure has been one of the most common attacks around the world.

Some examples of data leaks that resulted in sensitive data exposure are:

• The Brazilian C&A, a fashion retail clothing chain suffered a gift card platform cyberattack in August

2018.

• The Uber breach in 2016 that exposed the personal information of 57 million Uber users, as well as

600,000 drivers.

• The Target store data breach that occurred around Thanksgiving exposing credit/debit card and

contact information of up to 110 million people.

Failure to encrypt sensitive data is the main reason why these attacks are still so widespread. Even encrypted

data can be broken due to the following weaknesses:

• Key generation process;

• Key management process;

• Algorithm usage;

• Protocol usage;

• Cipher usage;

This vulnerability is usually very hard to explore; however, the consequences of a successful attack is dreadful.

If you want to learn more, we have written a blog post on the Impacts of the Security Breach.

6

THE AVERAGE DATA EXPOSURE COSTS AN SMB

$85,000 USD
THE AVERAGE COST FOR ENTERPRISE

$5 Million USD

https://www.zdnet.com/article/c-a-suffers-data-leak-in-brazil/
https://help.uber.com/riders/article/information-about-2016-data-security-incident?nodeId=12c1e9d1-4042-4231-a3ec-3605779b8815
https://www.zdnet.com/article/c-a-suffers-data-leak-in-brazil/
https://blog.sucuri.net/2018/05/the-impacts-of-a-data-breach.html

How to Prevent Data Exposure

Here are some of the ways to prevent data exposure, according to OWASP:

• Classify data processed, stored, or transmitted by an application.

• Identify which data is sensitive according to privacy laws, regulatory requirements, or business needs.

• Apply controls, as per the classification.

• Don’t store sensitive data unnecessarily.

• Discard it as soon as possible or use PCI DSS compliant tokenization or even truncation. Data that is not retained

cannot be stolen.

• Make sure to encrypt all sensitive data at rest.

• Ensure up-to-date and strong, standard algorithms, protocols, and keys are in place; use proper key management.

• Encrypt all data in transit with secure protocols such as TLS with perfect forward secrecy (PFS) ciphers, cipher

prioritization by the server, and secure parameters.

• Enforce encryption using directives like HTTP Strict Transport Security (HSTS).

• Disable caching for responses that contain sensitive data.

• Store passwords using strong adaptive and salted hashing functions with a work factor (delay factor), such as Argon2,

scrypt, bcrypt, or PBKDF2.

• Verify independently the effectiveness of configuration and settings.

7

4. XML External Entities (XXE)

What Are the Attack Vectors?

According to OWASP, the XML external entities (XXE) main

attack vectors are:

• Exploitation of vulnerable XML processors if

malicious actors can upload XML or include hostile

content in an XML document;

• Exploitation of vulnerable code;

• Exploitation of vulnerable dependencies;

• Exploitation of vulnerable integrations.

How to Prevent XML External Entity Attacks

Some of the ways to prevent XML External Entity attacks,

according to OWASP are:

• Whenever possible, use less complex data formats

such as JSON, and avoid serialization of sensitive

data.

• Patch or upgrade all XML processors and libraries in

use by the application or on the underlying operating

system.

• Use dependency checkers (update SOAP to SOAP

1.2 or higher).

• Disable XML external entity and DTD processing in

all XML parsers in the application, as per the OWASP

Cheat Sheet ‘XXE Prevention’.

• Implement positive (“whitelisting”) server-side input

validation, filtering, or sanitization to prevent hostile

data within XML documents, headers, or nodes.

• Verify that XML or XSL file upload functionality

validates incoming XML using XSD validation or

similar.

• SAST tools can help detect XXE in source code –

although manual code review is the best alternative

in large, complex applications with many integrations.

If these controls are not possible, consider using virtual

patching, API security gateways, and a Web Application

Firewalls (WAFs) to detect, monitor, and block XXE attacks.

Example of an XML External Entity Attack

According to OWASP, the easiest way to exploit an XXE is is

to upload a malicious XML file.

Scenario #1: The attacker attempts to extract data from

the server:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM “file:///etc/passwd” >]>

<foo>&xxe;</foo>

Scenario #2: An attacker probes the server’s private

network by changing the above ENTITY line to:

<!ENTITY xxe SYSTEM “https://192.168.1.1/private” >]>

Scenario #3: An attacker attempts a denial-of-service

attack by including a potentially endless file:

<!ENTITY xxe SYSTEM “file:///dev/random” >]>

According to Wikipedia

An XML External Entity attack is a type of attack against an application that parses XML input. This attack occurs when

XML input containing a reference to an external entity is processed by a weakly configured XML parser.

Most XML parsers are vulnerable to XXE attacks by default, and an XXE can occur in deeply nested dependencies. That is why the

responsibility of ensuring the application does not have this vulnerability lies mostly on the developer

8

https://sucuri.net/website-firewall/
https://sucuri.net/website-firewall/

5. Broken Access Control

In website security, access control means to put a limit on what sections or

pages visitors can reach, depending on their needs.

For example, if you own an ecommerce store, you probably need access to the

admin panel in order to add new products or to set up a promotion for the

upcoming holidays. However, hardly anybody else would need it. Having the

rest of your website’s visitors be able to reach your login page only opens up

your ecommerce store to attacks.

And that’s the problem with almost all major content management systems

(CMSs) these days. By default, they give worldwide access to the admin panel.

Most of them also won’t force you to establish a second-factor authentication

method (2FA).

The above makes you look at software development with a security-first

philosophy. Access control issues are also present in other areas.

Examples of Access

• Access to a hosting control / administrative panel

• Access to a server via FTP / SFTP / SSH

• Access to a website’s administrative panel

• Access to other applications on your server

• Access to a database

These are ways attackers can exploit authorization flaws:

• Access unauthorized functionality and/or data;

• View sensitive files;

• Modify other users’ data;

• Change access rights, etc.

9

Broken Access Control

What Are the Risks?

According to OWASP, here are a few examples of what can happen when there is

broken access control:

Scenario #1: The application uses unverified data in a SQL call that is

accessing account information:

pstmt.setString(1,request.getParameter(“acct”)); ResultSetresults

=pstmt.executeQuery();

An attacker simply modifies the ‘acct’ parameter in the browser to send

whatever account number they want. If not properly verified, the attacker can

access any user’s account.

 http://example.com/app/accountInfo?acct=notmyacct

Scenario #2: An attacker simply force browses to target URLs. Admin rights

are required for access to the admin page.

http://example.com/app/getappInfo

http://example.com/app/admin_getappInfo

Developers are going to be more familiar with the above scenarios, but

remember that broken access control vulnerabilities can be expressed in many

forms through almost every web technology out there; it all depends on what

you use on your website.

Reducing the Risks of Broken Access Control

There are things you can do to reduce the risk of broken access control:

1. Employ least privileged concepts – apply a role appropriate to the task

and no more.

2. Remove accounts you don’t need.

3. Audit your servers and websites – who is doing what, when, and why.

4. If possible, apply multi-factor authentication to all your access points.

5. Disable access points until needed in order to reduce your access windows.

6. Remove unnecessary services off your server.

7. Verify applications that are externally accessible versus applications that

are tied to your network.

8. If you are developing a website, bear in mind that a production box should

not be the place to develop, test, or push updates without testing.

How to Prevent Broken Access Control

With the exception of public resources, deny by default.

Implement access control mechanisms once and reuse them throughout the

application, including minimizing CORS usage.

The technical recommendations by OWASP to prevent broken access

control are:

• Model access controls should enforce record ownership, rather than

accepting that the user can create, read, update, or delete any record.

Note: For example, if a user log-ins as “John”, he could only create, read,

update or delete records associated with the id of “John”. Never the data

from other users.

• Unique application business limit requirements should be enforced by

domain models.

• Disable web server directory listing and ensure file metadata (e.g. .git) and

backup files are not present within web roots.

• Log access control failures, alert admins when appropriate (e.g. repeated

failures). Note: We recommend our free plugin for WordPress websites,

that you can download directly from the official WordPress repository.

• Rate limit API and controller access to minimize the harm from automated

attack tooling.

• JWT tokens should be invalidated on the server after logout.

• Developers and QA staff should include functional access control unit and

integration tests.

10

6. Security Misconfigurations

Hackers are always looking for ways to penetrate websites, and

security misconfigurations can be an easy way in. Here are some

examples of things that hackers usually try to exploit in order to

gain unauthorized access:

• Unpatched flaws

• Default configurations

• Unused pages

• Unprotected files and directories

• Unnecessary services

One of the most common webmaster flaws is to keep the CMS

default configurations.

Today’s CMS applications (although easy to use) can be tricky

from a security perspective for the end users. By far the most

common attacks are entirely automated. Many of these attacks

rely on users having only default settings.

This means that a large number of attacks can be avoided by

changing the default settings when installing a CMS.

For example, some CMS applications are writeable by the user –

allowing a user to install whatever extensions they want.

There are settings you may want to adjust to control comments,

users, and the visibility of user information. The file permissions

are another example of a default setting that can be hardened.

Where Can Security Misconfiguration Happen?

Security misconfiguration can happen at any level of an

application stack, including:

• Network services,

• Platform,

• Web server,

• Application server,

• Database,

• Frameworks,

• Custom code,

• Pre-installed virtual machines,

• Containers,

• Storage.

One example of application misconfigurations is the memcached

servers which, left on default settings, have an open UDP port

that attackers used to DDoS huge services in the tech industry. .

11

Security Misconfigurations

Scenario #1: The application server comes with sample applications that

are not removed from the production server.

These sample applications have known security flaws attackers use to

compromise the server. If one of these applications is the admin console

and default accounts weren’t changed, the attacker logs in with default

passwords and takes over.

Scenario #2: Directory listing is not disabled on the server. An attacker

discovers they can simply list directories. They find and download the

compiled Java classes, which they decompile and reverse engineer to

view the code. The attacker then finds a serious access control flaw in the

application.

Scenario #3: The application server’s configuration allows detailed

error messages, e.g. stack traces, to be returned to users. This potentially

exposes sensitive information or underlying flaws, such as component

versions. They are known to be vulnerable.

Scenario #4: A cloud service provider has default sharing permissions

open to the Internet by other CSP users. This allows stored sensitive data

to be accessed within cloud storage.

How to Have Secure Installation Systems

According to OWASP, here are some examples of security misconfigurations.

• A repeatable hardening process that makes it fast and easy to deploy

another environment that is properly locked down.

• Development, QA, and production environments should all be configured

identically, with different credentials used in each environment. Automate

this process in order to minimize the effort required to set up a new

secure environment.

• A minimal platform without any unnecessary features, components,

documentation, and samples. Remove or do not install unused features

and frameworks.

• A task to review and update the configurations appropriate to all security

notes, updates, and patches as part of the patch management process. In

particular, review cloud storage permissions.

• A segmented application architecture that provides effective and

secure separation between components or tenants, with segmentation,

containerization, or cloud security groups.

• Sending security directives to clients, e.g. Security Headers.

• An automated process to verify the effectiveness of the configurations

and settings in all environments.

12

7. Cross-Site Scripting (XSS)

Cross Site Scripting (XSS) is a widespread vulnerability that affects many web

applications. XSS attacks consist of injecting malicious client-side scripts into a

website and using the website as a propagation method.

The danger behind XSS is that it allows an attacker to inject content into a

website and modify how it is displayed, forcing a victim’s browser to execute

the code provided by the attacker while loading the page.

XSS is present in about two-thirds of all applications.

Generally, XSS vulnerabilities require some type of interaction by the user to be

triggered, either via social engineering or via a visit to a specific page. If an XSS

vulnerability is not patched, it can be very dangerous to any website.

Examples of XSS Vulnerabilities

Imagine you are on your WordPress wp-admin panel adding a new post. If you

are using a plugin with a stored XSS vulnerability that is exploited by a hacker, it

can force the browser to create a new admin user while in the wp-admin panel

or it can edit a post and perform other similar actions.

An XSS vulnerability gives the attacker almost full control of the most important

software of computers nowadays: the browsers.

Last year, our research team disclosed a stored XSS vulnerability in the

core of WordPress websites. Remote attackers could use this vulnerability

to deface a random post on a WordPress site and store malicious JavaScript

code in it.

13

http://stored XSS vulnerability in the core of WordPress websites
http://stored XSS vulnerability in the core of WordPress websites

 Cross-Site Scripting (XSS)

Scenario #1: The application server comes with sample applications that are

not removed from the production server. These sample applications have known

security flaws attackers use to compromise the server. If one of these applications is

the admin console and default accounts weren’t changed, the attacker logs in with

default passwords and takes over.

Scenario #2: Directory listing is not disabled on the server. An attacker discovers

they can simply list directories. They find and download the compiled Java classes,

which they decompile and reverse engineer to view the code. The attacker then finds

a serious access control flaw in the application.

Scenario #3: The application server’s configuration allows detailed error messages,

e.g. stack traces, to be returned to users. This potentially exposes sensitive information

or underlying flaws, such as component versions. They are known to be vulnerable.

Scenario #4: A cloud service provider has default sharing permissions open to the

Internet by other CSP users. This allows stored sensitive data to be accessed within

cloud storage.

Reflected XSS

OWASP defines the following attack scenarios involving XSS vulnerabilities.

1. The application or API includes unvalidated and unescaped user input as

part of HTML output. A successful attack can allow the attacker to execute

arbitrary HTML and JavaScript in the victim’s browser.

2. Typically the user will need to interact with some malicious link that points

to an attacker-controlled page, such as malicious watering hole websites,

advertisements, or similar.

Stored XSS

1. The application or API stores unsanitized user input that is

viewed at a later time by another user or an administrator.

Stored XSS is often considered high or critical risk.

DOM XSS

1. JavaScript frameworks, single-page applications, and APIs that

dynamically include attacker-controllable data to a page are

vulnerable to DOM XSS. Ideally, the application would not send

attacker-controllable data to unsafe JavaScript APIs.

2. Typical XSS attacks include session stealing, account takeover,

MFA bypass, DOM-node replacement or defacement (such as

Trojan login panels), attacks against the user’s browser such

as malicious software downloads, keylogging, and other client-

side attacks.

Types of XSS

According to OWASP, there are three types of XSS:

XSS Type

Stored

Reflected

DOM-Based

Server

Stored Server

Reflected Server

Client

Stored Client

Reflected Client

Subset of Client

14

8. Insecure Deserialization

In computer science, an object is a data structure; in other

words, a way to structure data. s Two key concepts make it

easier to understand:

• The process of serialization is converting objects to byte

strings.

• The process of deserialization is converting byte strings

to objects.

Example of Attack Scenarios

According to OWASP, here are some examples of attack

scenarios:

Scenario #1: A React application calls a set of Spring Boot

microservices. Being functional programmers, they tried to

ensure that their code is immutable. The solution they came

up with is serializing user state and passing it back and forth

with each request. An attacker notices the “R00” Java object

signature, and uses the Java Serial Killer tool to gain remote

code execution on the application server.

Scenario #2: A PHP forum uses PHP object serialization

to save a “super” cookie, containing the user’s user ID, role,

password hash, and other state:

a:4:{i:0;i:132;i:1;s:7:”Mallory”;i:2;s:4:”user”;

i:3;s:32:”b6a8b3bea87fe0e05022f8f3c88bc960”;}

An attacker changes the serialized object to give themselves

admin privileges:

a:4:{i:0;i:1;i:1;s:5:”Alice”;i:2;s:5:”admin”;

i:3;s:32:”b6a8b3bea87fe0e05022f8f3c88bc960”;}

One of the attack vectors presented by OWASP regarding

this security risk was a super cookie containing serialized

information about the logged in user. The role of the user was

specified in this cookie.

If an attacker is able to deserialize an object successfully, then

modify the object to give himself an admin role, they can serialize

it again. This set of actions could compromise the whole web

application.

How to Prevent Insecure Deserializations

The best way to protect your web application from this type of risk is not to

accept serialized objects from untrusted sources.

If you can’t do this, OWASP provides more technical recommendations that

you (or your developers) can try to implement:

• Implementing integrity checks such as digital signatures on any

serialized objects to prevent hostile object creation or data tampering.

• Enforcing strict type constraints during deserialization before object

creation as the code typically expects a definable set of classes.

• Bypasses to this technique have been demonstrated, so reliance

solely on this is not advisable.

• Isolating and running code that deserializes in low privilege

environments when possible.

• Logging deserialization exceptions and failures, such as where the

incoming type is not the expected type, or the deserialization throws

exceptions.

• Restricting or monitoring incoming and outgoing network connectivity

from containers or servers that deserialize.

• Monitoring deserialization, alerting if a user deserializes constantly.

15

9. Using Components with Known Vulnerabilities

These days, even simple websites such as personal blogs have a

lot of dependencies.

We can all agree that failing to update every piece of software

on the backend and frontend of a website will, without a doubt,

introduce heavy security risks sooner rather than later.

For example, our hacked website report for 2018 has a

dedicated section around outdated CMSs. This report shows

that at the time of the infection:

• 36.7% of infected WordPress websites were out of date.

• 50% of infected Modx websites were out of date.

• 63.1% of infected Drupal websites were out of date.

• 72.6% of infected phpBB websites were out of date.

• 83.1% of infected Magento websites were out of date.

• 87.5% of infected Joomla! websites were out of date.

• 91.3% of infected OpenCart websites were out of date.

• 97.2% of infected PrestaShop websites were out of date.

The question is, why aren’t we updating our software on time?

Why is this still such a huge problem today?

There are some possibilities, such as:

• Webmasters/developers cannot keep up with the pace of

the updates; after all, updating properly takes time.

• Legacy code won’t work on newer versions of its

dependencies.

This might be a little too dramatic, but every time you disregard

an update warning, you might be allowing a now known

vulnerability to survive in your system. Cybercriminals are quick

to investigate software and update changelogs.

Whatever the reason for running out-of-date software on your

web application is, you can’t leave it unprotected. Both Sucuri

and OWASP recommend virtual patching for the cases where

patching is not possible.

Virtual patching affords websites that are outdated (or with

known vulnerabilities) to be protected from attacks by preventing

the exploitation of these vulnerabilities on the fly. This is usually

done by a firewall and an intrusion detection system.

Vulnerable Applications

Vulnerable applications are usually outdated, according to

OWASP if:

• You do not know the versions of all components you use

(both client-side and server-side). This includes components

you directly use as well as nested dependencies.

• The software is vulnerable, unsupported, or out of date.

This includes the OS, web/application server, database

management system (DBMS), applications, APIs and all

components, runtime environments, and libraries.

• You do not fix or upgrade the underlying platform,

frameworks, and dependencies in a risk-based, timely

fashion. This commonly happens in environments when

patching is a monthly or quarterly task under change

control, which leaves organizations open to many days or

months of unnecessary exposure to fixed vulnerabilities.

• The software developers do not test the compatibility of

updated, upgraded, or patched libraries.

• You do not secure the components’ configurations.

You can subscribe to our blog feed to stay on top of website

security issues.

How to Prevent Using Components with Known
Vulnerabilities.

Some of the ways to prevent the use of vulnerable components are:

• Remove all unnecessary dependencies.

• Have an inventory of all your components on the client-side and

server-side.

• Monitor sources like Common Vulnerabilities and Disclosures

(CVE) and National Vulnerability Database (NVD) for vulnerabilities

in the components.

• Obtain components only from official sources.

• Get rid of components not actively maintained.

• Use virtual patching.

16

Block attacks and protect your site

Get Started Now >>
Sucuri Firewall

https://sucuri.net/reports/2018-hacked-website-report
https://blog.sucuri.net/2018/01/what-is-a-waf.html
https://sucuri.net/website-firewall/
https://info.sucuri.net/subscribe-to-security
https://sucuri.net/website-firewall/signup?utm_source=ebook&utm_campaign=OWASP

Need a security
solution for
your website?

Get Started Now >>

Sucuri
Security
Platform

10. Insufficient Logging and Monitoring

The importance of securing a website cannot be

understated. While 100% security is not a realistic goal,

there are ways to keep your website monitored on

a regular basis so you can take immediate action when

something happens.

Not having an efficient logging and monitoring process in

place can increase the chances of a website compromise.

Here at Sucuri, we highly recommend that every

website is properly monitored. If you need to monitor

your server, OSSEC is freely available to help you.

OSSEC actively monitors all aspects of system

activity with file integrity monitoring, log

monitoring, root check, and process monitoring.

How to Have Efficient Website Monitoring

Keeping audit logs are vital to staying on top of any

suspicious change to your website. An audit log is a

document that records the events in a website so you can

spot anomalies and confirm with the person in charge that

the account hasn’t been compromised.

We know that it may be hard for some users to perform

audit logs manually. If you have a WordPress website,

you can use our Free Security Plugin which can be

downloaded from the official WordPress repository.

The Sucuri Website Security Platform has a comprehensive

monitoring solution that includes:

1. Remote scanner

2. Website blacklist scanner

3. Server-side scanner

4. DNS scanner

5. SSL scanner

6. Uptime scanner

If you are looking for a security solution for your website,

check out our comprehensive Website Security

Platform.

Example of Attack Scenarios

According to OWASP, here are some examples of attack

scenarios due to insufficient logging and monitoring:

Scenario #1: An open-source project forum

software run by a small team was hacked using

a flaw in its software. The attackers managed

to wipe out the internal source code repository

containing the next version and all of the forum

contents. Although source could be recovered,

the lack of monitoring, logging, or alerting led

to a far worse breach. The forum software

project is no longer active as a result of this issue.

Scenario #2: An attacker scans for users with a

common password. They can take over all accounts

with this password. For all other users, this scan

leaves only one false login behind. After some days,

this may be repeated with a different password.

Scenario #3: A major U.S. retailer reportedly had

an internal malware analysis sandbox analyzing

attachments. The sandbox software had detected

potentially unwanted software, but no one

responded to this detection. The sandbox had been

producing warnings for some time before detecting

the breach due to fraudulent card transactions by

an external bank.

17

https://sucuri.net/website-security-platform/signup?utm_source=ebook&utm_campaign=OWASP
https://sucuri.net/website-security-platform/signup?utm_source=ebook&utm_campaign=OWASP
https://blog.sucuri.net/2018/10/security-monitoring-saves-the-day.html
https://www.ossec.net/
https://wordpress.org/plugins/sucuri-scanner/
https://sucuri.net/website-security-platform/malware-scanning-and-detection
https://sucuri.net/website-security-platform/signup
https://sucuri.net/website-security-platform/signup

© 2019 Sucuri. All Rights Reserved.

Sucuri helps organizations that want to ensure the integrity and availability of their websites. Unlike other website security systems, Sucuri offers a cloud-

based WAF along with monitoring and response services for compromised sites, excellent customer service, and a deep passion for research.
This ebook, “OWASP Top Ten Vulnerabilities 2019”, cites information and examples found in “Top 10-2017 Top Ten” by OWASP, used under CC BY-SA.

1–888-873-0817 sales@sucuri.net www.sucuri.net

https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Main_Page
https://creativecommons.org/licenses/by-sa/4.0/
mailto:sales%40sucuri.net?subject=Need%20Help%20with%20LetsEncrypt.%20Agency%20Plan%3A%20Onboarding%20Doc
http://www.sucuri.net

